27 Nov, 2020
JERUSALEM WEATHER

The world’s population is living longer – good news for people who are relatively healthy and function well, but bad news if they suffer from debilitating diseases, including dementia, that cost huge sums for themselves and their health systems to treat. 

Now, a groundbreaking clinical approach has been developed In Israel and the US that combines new diagnostic techniques to detect a leaking blood-brain barrier (BBB) with a new anti-inflammatory drug that for the first time slows or reverses age-related cognitive decline in lab mice. 

The BBB is a semi-permeable interface that separates circulating blood from the brain. It also prevents the transfer of unwanted molecules or infectious organisms from the blood to the brain. Increasing evidence shows that breaching the integrity of this barrier causes many brain diseases and neurodegeneration as a result of aging. 

In two related studies just published in the journal Science Translational Medicine, researchers from Ben-Gurion University of the Negev (BGU) in Beersheba and the University of California at Berkeley (UC) report that when given the new drug to reduce inflammation, senile mice had fewer signs of dysfunctional brain electrical activity and were better able to learn new tasks. They became almost cognitively skillful as mice half their age. 

Other findings indicate two practical pathways — measuring the leakiness of the blood-brain barrier via magnetic resonance imaging (MRI) and abnormal electrical brain activity using an electroencephalogram (EEG). These can be used to screen people for a leaky BBB. 

“These findings represent real hope that we can stop, and even reverse, the deterioration that until now we considered an inevitable part of aging,” said senior study author BGU Prof. Alon Friedman and research partner Prof. Daniela Kaufer of UC Berkeley’s department of integrative biology. “It is the first diagnostic, coupled with personalized drug intervention targeting the BBB.” 

 “We tend to think about the aged brain in the same way we think about neurodegeneration – age involves loss of function and dead cells,” said Kaufer. “But our new data tell a different story about why the aged brain is not functioning well; it is because of this ‘fog’ of inflammatory load. But when you remove that inflammatory fog, within days the aged brain acts like a young brain.”

It is an extremely optimistic finding in terms of the capacity for plasticity that exists in the brain and “indicates that we can reverse brain aging,” stated Kaufer. 

In analyzing brain tissue from humans, Kaufer found evidence of albumin in aged brains as well as increased neuroinflammation and production of TGF-beta, a protein that controls cell growth. Because albumin is typically produced in the body only outside the BBB, increased albumin within the brain indicates BBB damage leading to inflammation. 

The two researchers also showed that introducing albumin into the brain can, within a week, make the brains of young mice look like those of old mice, in terms of neuronal functions and their susceptibility to seizures. These albumin-treated mice also navigated a maze as poorly as aged mice. 

 “This combination of two biomarkers and a drug gives us the innovative ability to diagnose and treat patients with blood-brain barrier leakiness, and cease treatment once the BBB closes and danger decreases,” said Kaufer, adding: “We got here through this back door starting with questions about plasticity having to do with the blood-brain barrier, traumatic brain injury and how epilepsy develops. But after we’d learned a lot about the mechanisms, we started thinking that maybe in aging it is the same story. This is new biology, a completely new angle on why neurological function deteriorates as the brain ages.” They administered a new anti-inflammatory drug that specifically targets TGF-beta signaling; called IPW, the drug – a small molecule – not only helps to alleviate the effects of a leaky BBB but seems to also heal the barrier.

The researchers have started a company to develop IPW and other substances with the goal of reducing brain inflammation and thus permanent damage, after stroke, concussion or traumatic brain injury. The drug may eventually help older adults suffering from early dementia or Alzheimer’s disease with demonstrated BBB leakage.